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Abstract

Analytical equations-of-state for boson and fermion hard-sphere fluids
ranging from very low to very high densities are constructed. The fluid branch
extrapolations from the exact low-density series expansions for the energy are
carried out by incorporating various physical arguments, such as close pack-
ing densities and residues. Modified London equations-of-state for the high-
density crystalline branch agree very well with the computer simulations and

at close packing with certain experimental results at high pressure.
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1. Introduction

The hard-sphere system [1] serves as a first approximation to a many-body sys-
tem interacting via any pair potential containing a short-ranged repulsive part. The
approximation is better at low densities when the particles experience the attractive
potential only weakly, as well as at very high densities where the repulsive part
predominates. At intermediate densities the attractive potential plays a crucial, es-
sential role. The hard-sphere system also serves as a reference (or zero-order) system
in perturbative theories. For instance, in classical statistical physics this scheme is
the familiar Thermodynamic Perturbation Theory [2], which very successfully de-
scribes classical fluids. Its quantum counterpart, the Quantum Thermodynamic
Perturbation Theory (QTPT), has been developed [3] whereby an accurate quan-
tum hard-sphere equation of state for physical (i.e., intermediate) densities plays a
critical role in describing quantum fluids such as *He, *He, spin-polarized atomic
hydrogen H|, nuclear matter, etc. The goal here is to elaborate further upon the
efforts reported in [1] to obtain an accurate equation of state for quantum hard

sphere fluids at low, intermediate, and high densities.

At very low density the energy E for an N-identical-boson system is known [4]

to be given exactly by
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with p being the particle number density, m the mass of each boson and where «a is

the S-wave scattering length [5] of the pair potential between particles, C; = 1?\%

and Cy = 8(%7r —V/3). For a hard-sphere system a reduces to the hard-sphere
diameter ¢. This series is clearly not a power series expansion, and is at best an

asymptotic series.

For an N-identical-fermion system the corresponding series is [6]
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where the C; (7 = 1,2,...,9), given in [7] for v = 2 and v = 4, are dimensionless

coefficients depending on v, the number of intrinsic degrees of freedom of each
fermion. (Note: for v = 4, Cy = 0.556610 instead the incorrect value of 0.566610
quoted in [7], and Cy is not available for v = 4) . The Fermi-momentum Ak is
defined through the fermion number density

vk
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where ) is the system volume. The quantities a, ro, and A;(0) are parameters con-
taining information related to two-body scattering due to a central potential V(r).
However, Aj(0) cannot be related to scattering phase shift alone but is potential-
shape dependent and can thus be interpreted as the first correction to the static
limit, while Cg has a three-body cluster contribution. Both low-density expansions
(1) and (2) break down at moderate and high densities, including the saturation
(or equilibrium, zero-pressure) liquid densities of *He and “He, or nuclear matter.
In Sec. 2 we discuss analytical interpolation between low- and high-densities of the
equation of state for bosons and fermions. These interpolations are based on an
original equation by London for bosons. In Sec. 3, the series (1) and (2) for hard-
sphere systems can be extrapolated to physical and even to close packing densities

through the use of Padé and “tailing” [8] extrapolants.

At intermediate densities one has the presumably exact Green Function Monte

Carlo (GFMC) computer simulation for the many boson hard-sphere [9] fluid at



four densities. These simulations are a good guide for our analytical extrapolations
since they used identical interactions. For fermions, however, the need to satisfy
the Pauli exclusion principle has delayed good GFMC calculations for ground state
energies. The first results using this method have been reported for the energy of
liquid helium-three (*He) [10] where particles interact via the pairwise Aziz [11]

potential.

At very high density we expect that the hard sphere system will go to close
packing (CP) independently of statistics. This packing may be either random or
regular. The uncertainty principle implies a second-order pole in the ground-state
energy which can be written as
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where A, called the residue, is a dimensionless constant, and pcp is the appropriate
CP density. Using the polyhedron cell method suggested by Yang [12], the value of
A has been predicted theoretically [13] to lie within the rigorous range

1.63 < A <27.0 (5)

for regular CP (face-centered-cubic, fce, or hexagonal-close-packing, hep) by gener-
alizing the exact calculation for a simple cubic (sc) lattice based on three mutually
perpendicular linear lattices which gives A = 72, On the other hand, the experi-
mental value of A extracted by Cole [14] from high-pressure data of *He, *He, H,
and Dy systems is A >~ 15.7 £ 0.6 for the crystalline branch of the equation of state.
In Sec. 4 we exhibit the behavior of our equations of state as they go to CP and we

calculate the residues. Sec. 5 gives our conclusions.

2. Analytic Interpolations.



The first attempt to represent the ground-state energy per particle of an assembly
of N(>> 1) boson hard spheres for all densities appears to be that of London [15],

who proposed the analytical equation of state
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where ¢ is the hard-sphere diameter and b = (25/2/7{') — 1. Here pg = pcr and
po = V/2/¢ is the ultimate density [16] for a system of classical hard-spheres which
close packs in a primitive hexagonal, e.g., a face centered cubic (fcc) arrangement.
The basic rationale behind (6) is that it reduces smoothly, at both low and high

densities, to the well-known limiting expressions

E/N = (2xh?/m)pe, (7)
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The first asymptotic form (7) is the celebrated Lenz [17] term, calculated as the
leading correction to the energy due to an “excluded volume” effect. The limiting
expression (8) is precisely the kinetic energy of a point particle of mass m inside a

1/3 is the separation between two

spherical cavity of radius r — ¢, where r = (v/2/p)
neighboring spheres. This follows by assuming primitive hexagonal close packing,
e.g., hep or fece, of the N cavities. Recently, a generalization of the boson London

equation (6) was proposed [18] for fermion systems which reads
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and
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where the limit v = N — oo corresponds to bosons. The low-density limit of (9)

becomes

v— 1)27rh2
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The second term on the rhs is the Lenz term for v-component fermions, and reduces
to the boson Lenz term (7) for v — co. On the other hand, for p — pg one can see
that (9) reduces to (8) as it should. From this it follows that the residue for bosons
or fermions is the same, and equals 72/2'/% ~ 7.83. Although (9) shows good quali-
tative behavior for all densities, comparison at intermediate densities with computer
simulation GFMC, Variational Monte Carlo (VMC) data, exact Ladder [6] or Vari-
ational Fermi Hypernetted-Chain (VFHNC) [19] data, suggests other alternatives

to be discussed below.

Also recently it was noted [20] that the derivation of the high-density extreme
of the original [15] (boson) London equation (6), and consequently of the general-
ized [18] (fermion) London equation (9), contains one fundamental error related to
neglect of the effective two-body mass. Correcting for this gives b = 2%/% /7 — 1
(instead of the 2°/%/7 — 1 cited by London) in (6). The new result was desig-
nated [20] the modified London equation, and continues to satisfy (7) as this is
independent of the constant b in (6). The residue A in (4) is now 2¥/37? ~ 15.7
in full agreement with Cole’s empirical residue [14] quoted below (5). Moreover,
this modified London (ML) equation agrees dramatically better than the origi-
nal London (L) equation with GFMC computer simulation [9] of both fluid and
crystalline branches of the boson hard-sphere system. We show this agreement in

Fig. 1 where the dimensionless quantity 561/2 = \/27Th2ch/m E =1-(p/po)'’?]




X \/1 +b(p/po)'/? is plotted as a function of p/pg for the generalized London equa-
tion (9), without (dashed curves) and with (full curves) the correct two-body effec-
tive mass as discussed in Ref. [20]. The modified boson London curve (ML) agrees
very well with the GFMC data [9] for boson hard-spheres; open circles are data for
the fluid branch and full circles are data for the solid branch.

3. Low-density series expansions.

We begin with the low density expansions (1) and (2) for the energy and then
extrapolate them to intermediate and very high densities through Padé [21] and

related approximants.

For boson hard spheres Eq. (1) can be rewritten as

2mh?
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m
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with
eo(z) =1+ Ciz + Coxtlnz? + Cyz? + 0(1:3 In 1:2). (14)

Alternatively, one may expand
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for + < 1, where the F’s are expressible in terms of the C’s, but 3 and F3 and
higher-order coeflicients are unknown. Values of the I’s are given in Table 1. Instead
of series-analyzing eg(x), we prefer to work with 661/2(1}) so as to ensure that zeros
in the extrapolants to eal/Z(x) are second order poles in the energy (13) as expected
at CP from (4). Besides the trivial extrapolant, four “tailing” [8] extrapolants to
the series (15) with two terms (say, Fy and F3) exist and are given in Table I of [22].
However, only the form denoted there by “i” is well behaved and acceptable. Here,

as well as in [22], well behaved means that the corresponding 661/2($) approximant:

a) has a zero at some x¢p into the interval 0 < & < 1.1 and b) it doesn’t increase
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faster than linearly in the interval 0 < x < 2z, since the energy itself must increase
monotonically in this range. The next step is to analyze the twelve extrapolants
from the series (15) with three (including F3) terms. The unknown coefficient F3
was adjusted to ensure agreement with GFMC data. Forms denoted in [22] by VII
and XI satisfied the above a) and b) conditions, and although both approximants go
across the four GFMC fluid data points the mean square deviation was least with
form XI, which we therefore adopt as our best extrapolant. Similar analysis was
realized in [22] but they used one half of the correct values for the GFMC energy
data which we used to do the fitting. So the ground state energy for boson hard
spheres will be represented (symbol =) by

o2rh?
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where F3 = —27.956. In Fig. 2, we graph both the extrapolations 561/2 as a function
of (p/po)'/? for the fluid branches of boson and fermion hard-spheres, as well as the
various computer simulations listed there. For bosons, we plot (17) as the upper
full curve labeled XI, which fits the fluid GFMC data [9] (open circles). This (fluid
branch) curve predicts a random close packing (RCP) density of p = 0.776 po which
is only ten percent below the classical [23] RCP value of p = 0.86 pg, which in turn
is expected to be the highest CP density also for quantum hard sphere fluids in
the metastable region. Since particles at CP are perfectly localized they loose their
indistinguishability so that all results should be independent of statistics in the limit.
A residue of A = 17.05 follows from (16) and (17), and thus obeys the bounds (5).
Note that this is slightly larger than Cole’s experimental residue of 15.7 + 0.6 as we

would expect from arguments to be given below in Sec. 4.

For fermion hard sphere systems (2) can be rewritten as
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For v =2, Cs = 0 [7] and (19) simplifies to
eo(z) ~ 14+ Dya+ Dy 224+ Dy + Dyt + 0(:04) (20)

for @ < 1, with the D’s expressible in terms of the C’s. Similarly as in the boson
case, instead of eg(x) we shall series-analyze

-1/2
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where the F!s depend algebraically on the D!s in a simple manner, but Fj is un-
known. Values of D; and F; are given in Table 2. This series is an ordinary power
series so that one may apply ordinary Padé approximants. The approximants to
(21) with four terms (F} to Fy) were discussed in Ref. [24], where it was concluded
that the best extrapolant was the [4/0](z) Padé approximant. However, this func-
tion does not possess a zero in the region of physical interest, i.e., 0 < z < 3.47, and
so the energy does not diverge at any CP. It was thus necessary to introduce the
fifth (F5) term in (21). Its five Padé approximants were analyzed and F5 adjusted
to ensure a zero. The placement of the zero and the approximant were chosen [25]
in such a way that the QTPT applied to *He with the Aziz interatomic potential
[11] reproduce the corresponding GFMC [10] data for liquid *He. Ultimately the

best (two-point Padé) extrapolant is
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so that the energy becomes

3 thfw
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(23)
with a CP density at p/py = 0.732 and a residue of A = 4.97. The resulting
coefficient Fy is listed in Table 2 and (22) is graphed in Fig. 2, as a function of

(p/po)'/?. As an additional comparison, the results of the L-expansion [26] [27] have
also been plotted in Fig. 2. For v = 2 they agree very well with the [3//2] results.

For v = 4 fermions, Eq. (19) becomes

eo(z) ~ 1+ Dya+ Dy 224 Dyz®+ Dyxtlnz + Ds 2t + 0(3:5) (24)

for x < 1. As with bosons and v = 2 fermions, we shall analyze instead the series

—-1/2
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with all F; except F5 known. Values of D; and Fj, are given in Table 3. Unlike the
case v = 2, this series is not a power series but a mixture of power and logarithmic
terms. Its tailing approximants are given in Table I1I of [22]. We eliminate approx-
imants to 661/2(.17) having a pole in the range of physical densities, i.e., from zero to
the “empirical” nuclear matter saturation density of p, = 0.17 fm~2. This reduces
the number of acceptable approximants to five, and from these we select form II and
form XII because only these extrapolants have residues within the bounds (5). The
energy is finally given by
_ 3h%k%

BIN = o a(e), (26)
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with either

Fyaz?
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—1/2, \ .
s (o) = L — (F5/Fy)x — Fyatlnz

= XII(x) (28)

Although both approximants are very similar the residue of extrapolant form I1I(z)
is less than the estimated [13] exact lower bound, which is why we prefer extrapolant
form XII(x) as the better extrapolant, and it is graphed in Fig. 2 (dot-dashed curve),
as a function of (p/po)/®. This choice of form XII for v = 4 is reinforced by the
agreement with the results of the L-expansion [26] [27]. In spite of the predicted
quantum RCP densities denoted by (p/po)cr in Table 4 lying well below the expected
classical RCP density of p/pg = 0.86, we hope that the approximants are good at

least from zero through nuclear matter saturation density of about p/py = 0.008.

4. Random close packing.

We now analyze the behavior of the energy per particle £/N of hard-sphere
systems as they approach CP. By uncertainty-principle arguments, as in (4), we

now use pcp instead of py as the endpoint density so that

2

h /3
Bo/N | AS—(p7* = pg*) (20)

P7PCP - 2m °r

with the residue A depending on the particular geometrical configuration of hard-
sphere packing. For regular fcc or hep close packing po = v/2/¢?, ¢ being the hard
sphere diameter. For quantum random close packing (RCP), we expect the packing

density to be that of classical RCP, i.e., 0.86 po.

Although the bounds on A have been found for regular (as opposed to random)

close packing such as found in the limit of the crystalline branch of helium, it can
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be shown that lower bounds will be identical for the fluid branch with a smaller CP
density. This can be seen from (6) if we change pg to « prcp with @ > 1, so that the

new residue would then be o'/® A which is larger than the original residue A.

From the original (boson) London equation (6) a residue of A = 72/2'/3 ~ 7.83
was found. This residue was also assumed [18] in the generalized (fermion) London
equation (9) to (11). Although the residue obeys the bounds (5), it generates energies
deviating appreciably [20] from boson GFMC data [9]. In the Modified [20] London
equation (6) the residue increases by a factor of two. With this modification the
energy suddenly agrees rather well with the GFMC fluid data and the new residue
coincides with the value extracted from experiment. However, we shall use this
equation to represent not the fluid but rather the crystalline branch since it close-

packs at the proper expected reqular CP density.

To model the fluid branch energy we start with the exact low-density series and
extrapolate them to some RCP density, smaller than the fcc or hexagonal CP density
po = V2/¢*. In addition to being well-behaved at intermediate densities, we observe
that these extrapolations also obey the bounds (5). For the boson hard-sphere fluid
the extrapolant form XI(z) (17) has the smaller mean-square-deviation from GFMC,
a CP density p = 0.78 pp which is thus nearer to the classical RCP value of 0.86 po,
and a residue of 17.05 which is just slightly larger than Cole’s experimental residue

of 15.7 £0.6.

In Table 4 we summarize our results. For a fermion system with v = 2, the
ground state energy (23) develops a RCP pole near the boson-hard-sphere RCP and
around the expected classical RCP value. However, its residue of A = 4.92 is notably
smaller than the experimental residue for a regular CP arrangement. The reason for
this is probably that the fifth term in the series (21) may be a logarithmic instead of
a power term. For fermions with v = 4 the extrapolant XII(z), Eq. (28), to 661/2(.17)
produces energies with acceptable behavior in the range of densities from zero to the

saturation density of nuclear matter. Unfortunately, it produces a packing density

12



of only 0.385 pg. This may suggest that the number of terms considered in the series
(24) and (25) are insufficient.

5. Conclusions.

To construct hard-sphere fluid equations-of-state all available coefficients in the
low-density series expansion for the ground-state energy-per-particle of a many-
fermion and many-boson system of particles were employed along with physical
arguments related to close-packing densities and residues. These equations should
be reasonably accurate from zero through physical densities as zero-order approxi-
mations in a quantum thermodynamic perturbation theory of real quantum fluids
such as liquid-*He, liquid-*He, spin-polarized hydrogen (HJ), nuclear and neutron

matter, etc.
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Figure Captions

Figure 1. Dimensionless quantity 551/2 = \/Qthch/mE = [1 — (p/po)'"]
X \/1 +b(p/po)'/? for London equations (dashed curves) and for Modified Lon-

don equations (full curves), as functions of p/pg, for bosons (ML, ), for fermions
with v = 2 (MLy) and for fermions with v = 4 (ML4). GFMC data are for boson

hard-spheres; open circles are data for fluid branch and full circles for solid branch.

Figure 2. Dimensionless quantity 561/2 = \/QTFthCN/TTLE for bosons (v = o),
fermions with v = 2 and v = 4, as function of (p/po)/?, where py = v2/c. Ex-
trapolations for the fluid branch are denoted by XI (full line) for bosons, by [3//2]
(dashed line) for fermions with v = 2, and by XII (dot-dashed line) for fermions
with v = 4, all as discussed in the text. Open circles are GFMC data for the fluid
branch of boson hard-spheres. “Ladder” datapoints come from Ref. [26], while the
“L-expansion” ones come from both Ref. [26] and [27]. The three arrows on the
abscissa axis mark the saturation densities of nuclear matter (p;/po ~ 0.008 with
¢ = 0.4 fm), of liquid *He (ps/po ~ 0.108 with ¢ = 2.1117 A) and of liquid *He
(ps/po = 0.153 with ¢ = 2.1463 A), respectivelly.
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Table Captions

Table 1. C; and F; coefficients in (14) and (15), respectively.

Table 2. D; and F; coefficients in (20) and (21), respectively.

Table 3. D; and F; coefficients in (24) and (25), respectively.

Table 4. Energies per particle, /N, in units of (h*/mc?), compared at the satu-
ration density ps/po, as well as at a particular close packing density (p/po)ce, and
the residue A resulting from the method used. Boson hard-sphere energies are given
at *He saturation density, fermion (v = 2) hard-sphere energies are given at *He
saturation density and fermion (v = 4) hard-sphere energies are given at nuclear
matter saturation density. The value of ¢ for >He and *He is taken as the respective

empirical S-wave scattering length, and for nuclear matter as the value 0.4 fm.
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V=00 1=1 2 3
C; 4.81441778 | 19.65391518 | “73.296”
F; -2.40720889 | -9.826957589 | “-27.956”
Table 1
v=2 1=1 2 3 4 5
D, 0.353678 | 0.185537 | 0.384145 | -0.024700 | “-0.2655435”
F; |-0.176833 | -0.045863 | -0.156677 | 0.109672 | “0.130830”
Table 2
v=4 1=1 2 3 4
D, 1.061033 | 0.556610 | 1.300620 | -1.408598
F; |-0.530517 | 0.143867 | -0.5806558 | -0.704299
Table 3




case E/N[E*/mc*] | (p/po)ce residue A
BOSONS London 4.39 1 7?2 /213 ~ 7.83
IS Mod. Lond. 6.62 1 2712 /21/3 ~ 15.67
ps/po = 0.153 XI 6.65 0.776 17.05
c=2.1463 A VMC 6.63 — —
GFMC 6.47 — —
FERMIONS London 2.683 1 w2213 ~ 7.83
v=2 Mod. Lond. 3.224 1 271?213 ~ 15.67
ps/po = 0.1080 [3//2] 3.180 0.732 4.97
¢=21117 A | VFHNC 4.055 — —
Ex. Ladder 4.229 — —
FERMIONS London 0.1632 1 7.83
v=4 Mod. Lond. 0.1738 1 15.67
ps/po = 0.008 XII 0.1651 0.385 12.83
c=0.4 fm VFHNC 0.1729 — —
Table 4
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